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The vsgoftest package provides functions for estimating Shannon entropy of absolutely continuous distri-
butions and testing the goodness-of-�t of some theoretical family of distributions to a vector of real numbers.
It also provides functions for computing the density, cumulative density and quantile functions of Pareto and
Laplace distributions, as well as for generating samples from these distributions.

The vsgoftest package is available on CRAN mirrors and can be installed by executing the command

install.packages('vsgoftest')

Alternatively, the latest (under development) version of the vsgoftest package is also available and can
be installed in R from the github repository of the project as follows:

#Package devtools must be installed

devtools::install_github('pregnault/vsgoftest')

The package is structured around two functions, entropy.estimate and vs.test. The �rst one computes
the spacing based estimator of the di�erential entropy

S(P ) := −
∫
R
p(x) log p(x)dx (0.1)

of a distribution P on R with density p from a numeric sample X1, . . . , Xn drawn from P . The second one
performs Vasicek-Song GOF test for usual parametric families of distributions. A comprehensive presentation
of their usage is proposed in Sections 1 and 2, with numerous examples. An application to environmental
data is presented in Section 3. The theoretical background attached to entropy estimation and Vasicek-Song
tests is presented in the Appendix. In addition, details about entropy estimation, Vasicek-Song goodness-
of-�t tests and the contents and features of the package are available in the listed references at the end of
this document. Particularly, see [1] and [2].

1 Function entropy.estimate for estimating di�erential entropy

The function entropy.estimate computes the spacing based estimate (A.1) of Shannon entropy (0.1) from
a numeric sample. Two arguments have to be provided:
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� x: the numeric sample;

� window: an integer between 1 and half of the sample size, specifying the window size of the spacing-
based estimator (A.1).

It returns, as a single value, the estimate of Shannon entropy of the sample. Here is an example for a sample
drawn from a normal distribution with parameters µ = 0 and σ2 = 1.

library('vsgoftest')

Loading required package: fitdistrplus

Loading required package: MASS

Loading required package: survival

set.seed(2) #set seed of PRNG

samp <- rnorm(n = 100, mean = 0, sd = 1) #sampling from normal distribution

entropy.estimate(x = samp, window = 8) #estimating entropy with window = 8

[1] 1.394728

log(2*pi*exp(1))/2 #the exact value of entropy

[1] 1.418939

The estimate returned by entropy.estimate obviously depends on the window selected by the user, as
illustrated by the following chunck.

sapply(1:10, function(w) entropy.estimate(x = samp, window =w))

[1] 1.205018 1.346352 1.378732 1.387337 1.391691 1.393512 1.394428 1.394728

[9] 1.394486 1.392669

One may select the window size that maximizes the entropy estimate, as follows.

n <- 100 #sample size

V <- sapply(1:(n/2 - 1), function(w) entropy.estimate(x = samp, window =w))

which.max(V) #Choose window that maximizes entropy

[1] 8

Let us consider a sample drawn from a Pareto distribution with density

p(x; c, µ) =
µcµ

xµ+1
, x ≥ c,

where c > 0 and µ > 0, which can be obtained by making use of the function rpareto as illustrated below.
Its Shannon entropy is

S(p(.; c, µ)) = − lnµ+ ln c+
1

µ
+ 1.
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set.seed(5)

n <- 100 #Sample size

samp <- rpareto(n, c = 1, mu = 2) #sampling from Pareto distribution

entropy.estimate(x = samp, window = 3)

[1] 0.8480204

-log(2) + 3/2 #Exact value of entropy

[1] 0.8068528

2 Function vs.test for testing GOF to a speci�ed model

The function vs.test performs the Vasicek-Song GOF test (VS test) of a numerical sample for whether a
prescribed distribution P = P0(θ), the so-called simple null hypothesis test

H0 : P = P0(θ) against H1 : P ̸= P0(θ), (2.1)

or to a parametric family P0(Θ), the so-called composite null hypothesis test

H0 : P ∈ P0(Θ) against H1 : P /∈ P0(Θ); (2.2)

see Appendix below for details. Setting two non-optional arguments is required:

� x: the numeric sample;

� densfun: a character string specifying the theoretical family of distributions of the null hypothesis.
Available families of distributions are: uniform, normal, log-normal, exponential, gamma, Weibull,
Pareto, Fisher and Laplace distributions. They are referred to by the symbolic name in R of their density
function. For example, set densfun = 'dnorm' to test GOF of the family of normal distributions.

It returns an object of class htest, i.e., a list whose main components are:

� statistic: the value of VS test statistic (A.9) for the sample, with optimal window size de�ned
by (A.8);

� parameter: the optimal window size;

� estimate: the maximum likelihood estimate of the parameters of the null distribution;

� p.value: the p-value associated to the sample.

By default, vs.test performs the composite VS test of the family of distributions densfun for the
sample x. The p-value is estimated by means of Monte-Carlo simulation if the sample size is smaller than
80, or through the asymptotic distribution (A.4) of the VS test statistic otherwise.

In the following example, a normally distributed sample is simulated. VS test rejects the null hypothesis
that this sample is drawn from a Laplace distribution, but does not reject the normality hypothesis (for a
signi�cant level set to 0.05).
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set.seed(5)

samp <- rnorm(50,2,3)

vs.test(x = samp, densfun = 'dlaplace')

Vasicek-Song GOF test for the Laplace distribution

data: samp

Test statistic = 0.32437, Optimal window = 2, p-value = 0.0248

sample estimates:

Shape Scale

2.194803 2.687321

set.seed(4)

vs.test(x = samp, densfun = 'dnorm')

Vasicek-Song GOF test for the normal distribution

data: samp

Test statistic = 0.21655, Optimal window = 2, p-value = 0.3704

sample estimates:

Mean St. dev.

2.194803 3.173824

For performing a simple null hypothesis GOF test, the additional argument param has to be set as a
numeric vector, consistent with the parameter requirements of the null distribution. In such case, the MLE
of the parameter(s) of the null distribution has not to be computed and hence the component estimate in
results is not available.

set.seed(26)

vs.test(x = samp, densfun = 'dnorm', param = c(2,3))

Vasicek-Song GOF test for the normal distribution with Mean=2, St.

dev.=3

data: samp

Test statistic = 0.22196, Optimal window = 2, p-value = 0.331

If param is not consistent with the speci�ed distribution � e.g., standard deviation for testing a normal
distribution is missing or negative, the execution is stopped and an error message is returned.

set.seed(2)

samp <- rnorm(50, -2, 1)

vs.test(samp, densfun = 'dnorm', param = -2)

Error in vs.test(samp, densfun = "dnorm", param = -2): "param": invalid parameter (not

consistent with the specified distribution)
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One can estimate the p-value of the sample by Monte-Carlo simulation, even when sample size is larger
than 80, by setting the optional argument simulate.p.value to TRUE (NULL by default). The number of
Monte-Carlo replicates can be �xed through the optional argument B (default is B = 5000).

set.seed(1)

samp <- rweibull(200, shape = 1.05, scale = 1)

vs.test(samp, densfun = 'dexp')

Vasicek-Song GOF test for the exponential distribution

data: samp

Test statistic = 0.10907, Optimal window = 3, p-value = 0.3461

sample estimates:

Rate

1.15047

set.seed(2)

vs.test(samp, densfun = 'dexp', simulate.p.value = TRUE, B = 10000)

Vasicek-Song GOF test for the exponential distribution

data: samp

Test statistic = 0.10907, Optimal window = 3, p-value = 0.3504

sample estimates:

Rate

1.15047

Vasicek's estimates Vmn are computed for all m from 1 to n1/3−δ, where δ < 1/3; the test statistic is Im̂n

for m̂ the optimal window size, as de�ned in (A.8). The choice of δ depends on the family of distributions
of the null hypothesis. Precisely, for Weibull, Pareto, Fisher, Laplace and Beta, δ is set by default to 2/15,
while for uniform, normal, log-normal, exponential and gamma, it is set to 1/12. These default settings result
from numerous experimentations. Still, the user can choose another value through the optional argument
delta.

set.seed(63)

vs.test(samp, densfun = 'dexp', delta = 5/30)

Vasicek-Song GOF test for the exponential distribution

data: samp

Test statistic = 0.16517, Optimal window = 2, p-value = 0.1538

sample estimates:

Rate

1.15047
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Note that upper-bounding the window size by n1/3−δ is only required when the asymptotic normality
of Imn is used to compute asymptotic p-values from (A.4). When the p-value is computed by means of
Monte-Carlo simulation, this upper-bound can be extended to n/2 by adding extend = TRUE, which may
lead to a more reliable test, as illustrated below.

set.seed(8)

samp <- rexp(30, rate = 3)

vs.test(x = samp, densfun = "dlnorm")

Vasicek-Song GOF test for the log-normal distribution

data: samp

Test statistic = 0.30717, Optimal window = 2, p-value = 0.1206

sample estimates:

Location Scale

-2.162290 1.683868

vs.test(x = samp, densfun = "dlnorm", extend = TRUE)

Vasicek-Song GOF test for the log-normal distribution

data: samp

Test statistic = 0.3029, Optimal window = 3, p-value = 0.007

sample estimates:

Location Scale

-2.162290 1.683868

Enlarging the range of m is also pertinent if ties are present in the sample. Indeed, the presence of ties
is particularly inappropriate for performing VS tests, because some spacings X(i+m) −X(i−m) can be null.
The window size m has thus to be greater than the maximal number of ties in the sample. Hence, if the
upper-bound n1/3−δ is less than the maximal number of ties, the test statistic can not be computed. Setting
extend to TRUE can avoid this behavior, as illustrated below.

samp <- c(samp, rep(4,3)) #add ties in the previous sample

vs.test(x = samp, densfun = "dexp")

Warning in vs.estimate(x, densfun, ESTIM, extend, delta, relax): Ties should not be

present for Vasicek-Song test

Error in vs.estimate(x, densfun, ESTIM, extend, delta, relax): Too many ties to compute

Vasicek estimate.

vs.test(x = samp, densfun = "dexp", extend = TRUE)

Warning in vs.estimate(x, densfun, ESTIM, extend, delta, relax): Ties should not be

present for Vasicek-Song test
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Vasicek-Song GOF test for the exponential distribution

data: samp

Test statistic = 0.025702, Optimal window = 16, p-value = 0.9052

sample estimates:

Rate

1.683785

Finally, Vasicek's estimate Vmn may exceed the parametric estimate of the entropy of the null distribution
for all m between 1 and n1/3−δ. Then, no window size exists satisfying (A.8), as illustrated below.

set.seed(84)

ech <- rpareto(20, mu = 1/2, c = 1)

vs.test(x = ech, densfun = 'dpareto', param = c(1/2, 1))

Error in vs.estimate(x, densfun, ESTIM, extend, delta, relax): The sample entropy is

greater than empirical maximal entropy for all possible window sizes; the sample may be

too small or is unlikely to be drawn from the null distribution.

Enlarging the possible window sizes by setting extend to TRUE may enable Vasicek estimates to be smaller
than empirical entropy.

Note that when computing the p-value by Monte-Carlo simulation, the constraint (A.7) may not be
satis�ed for some replicates, whatever be the window size. These replicates are then ignored and the p-value
is computed from the remaining replicates. A warning message is added to the output, informing on the
number of ignored replicates.

data(contaminants)

set.seed(1)

vs.test(x = aluminium2, densfun = 'dpareto')

Warning in vs.test(x = aluminium2, densfun = "dpareto"): For 176 simulations (over 5000

), entropy estimate is greater than empirical maximum entropy for all window sizes.

Vasicek-Song GOF test for the Pareto distribution

data: aluminium2

Test statistic = 1.3676, Optimal window = 2, p-value < 2.2e-16

sample estimates:

mu c

0.3288148 360.0000000

A large proportion of such ignored replicates may indicate that the original sample is too small or the
null distribution does not �t it.

3 Application to real data

The vs.test package contains environmental data originating from a guidance report edited by the Tech-
nology Support Center of the United States Environmental Protection Agency; see [3]. According to [3],
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environmental scientists take remediation decisions at suspected sites based on organic and inorganic con-
taminant concentration measurements. These decisions usually derive from the computation of con�dence
upper bounds for contaminant concentrations. Testing the goodness-of-�t of speci�ed models hence appears
of prior interest. [3] also points out that contaminant concentration data from sites often appear to fol-
low a skewed probability distribution, making the log-normal family a frequently-used model. The authors
illustrate their purpose by applying Shapiro-Wilk test to the log-transformed of the samples aluminium1,
manganese, aluminium2 and toluene (stored in the present package)1

The following code chunks intend to illustrate the use and behavior of the function vs.test for these
environmental data. The signi�cant level is �xed to 0.1 as in [3]. Note that warning messages notifying that
there are ties in the samples have been dropped out from outputs.

set.seed(1)

vs.test(x = aluminium1, densfun = 'dlnorm')

Vasicek-Song GOF test for the log-normal distribution

data: aluminium1

Test statistic = 0.31232, Optimal window = 2, p-value = 0.3372

sample estimates:

Location Scale

6.225681 1.609719

The log-normal hypothesis is not rejected for aluminium1. Similar results are obtained for manganese.
Log-normality is rejected for aluminium2.

set.seed(1)

vs.test(x = aluminium2, densfun = 'dlnorm')

Vasicek-Song GOF test for the log-normal distribution

data: aluminium2

Test statistic = 0.48369, Optimal window = 2, p-value = 0.0256

sample estimates:

Location Scale

8.9273293 0.8264409

Due to numerous ties in toluene, vs.test can not compute Vasicek entropy estimate unless extend is
set to TRUE. Still, vs.test noti�es that the constraint (A.7) is violated for all window sizes, which suggests
that data are not likely to be drawn from the log-normal distribution. Turning relax to TRUE yields the
following result.

set.seed(1)

vs.test(x = toluene, densfun = 'dlnorm', extend = TRUE, relax = TRUE)

Vasicek-Song GOF test for the log-normal distribution

1A succinct description of these data is available by executing the following R command: ?contaminants
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data: toluene

Test statistic = -2.4984, Optimal window = 11, p-value = 0.7308

sample estimates:

Location Scale

4.651002 3.579041

Again, this last result looks spurious because the test statistic is negative � resulting from (A.7) not
being satis�ed by setting relax = TRUE. An alternative is to test normality of the log-transformed sample
as follows.

set.seed(1)

vs.test(x = log(toluene), densfun ='dnorm', extend = TRUE)

Vasicek-Song GOF test for the normal distribution

data: log(toluene)

Test statistic = 0.6536, Optimal window = 11, p-value = 2e-04

sample estimates:

Mean St. dev.

4.651002 3.579041

The log-normal hypothesis is not rejected for aluminium1 and manganese, while it is rejected for aluminium2
and toluene. These results are consistent with those obtained by [3]. Further, the goodness-of-�t to the
Pareto distributions is performed for aluminium2 and toluene. Log-normal and Pareto distributions usually
compete with closely related generating processes and hard to distinguish tail properties. Goodness-of-�t of
Pareto distribution is rejected for aluminium2.

set.seed(1)

vs.test(x = aluminium2, densfun = 'dpareto')

Vasicek-Song GOF test for the Pareto distribution

data: aluminium2

Test statistic = 1.3676, Optimal window = 2, p-value < 2.2e-16

sample estimates:

mu c

0.3288148 360.0000000

Applying vs.test to toluene with default settings yields no result because of numerous ties and the
violation of (A.7). Uniformity of the sample transformed by the cumulative density function of the Pareto
distribution can be tested as follows. Goodness-of-�t of the Pareto distribution is not rejected for toluene.

#Compute the MLE of parameters of Pareto dist.

res.test <- vs.test(x = toluene,

densfun = 'dpareto',

extend = TRUE, relax = TRUE)
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#Test uniformity of transformed data

set.seed(5)

vs.test(x = ppareto(toluene,

mu = res.test$estimate[1],

c = res.test$estimate[2]),

densfun ='dunif', param = c(0,1), extend = TRUE)

Vasicek-Song GOF test for the uniform distribution with Min=0, Max=1

data: ppareto(toluene, mu = res.test$estimate[1], c = res.test$estimate[2])

Test statistic = 0.25383, Optimal window = 10, p-value = 0.2496

A Appendix: Vasicek-Song tests, theoretical background

[4] proposes a goodness-of-�t test based on Kullback-Leibler divergence for either simple (2.1) or composite
(2.2) null hypotheses. Precisely, the test statistic Imn is an estimator of the Kullback-Leibler divergence
K(P |P0(θ)) = −S(P ) −

∫
p0(x; θ)p(x)dx of the sampled distribution P , with respect to the null distribu-

tion P0(θ) (with respective densities p and p0(.; θ)) in case of a simple hypothesis or some estimate P0(θ̂n)
otherwise:

Imn := −Vmn − 1

n

n∑
i=1

log p0(Xi, θ̂n),

where

Vmn :=
1

n

n∑
i=1

log
( n

2m

[
X(i+m) −X(i−m)

])
(A.1)

estimates S(P ) while − 1
n

∑n
i=1 log p0(Xi, θ̂n) estimates −

∫
R log p0(x; θ)p(x)dx. For the test (2.1) with simple

null hypothesis, set θ̂n = θ, where θ is the null parameter. Otherwise, θ̂n is the maximum likelihood estimator
(MLE) of θ, i.e., it satis�es

1

n

n∑
i=1

log p0(Xi, θ̂n) = max
θ∈Θ

1

n

n∑
i=1

log p0(Xi, θ).

[4] establishes the asymptotic behavior of Imn, independently of the null hypothesis. Precisely, Imn is
consistent and asymptotically normally distributed, provided the distribution of the sample belongs to the
following class of distributions:

F =

{
P ∈ D : sup

x: 0<F (x)<1

|p′(x)|
p2(x)

F (x)[1− F (x)] < γ

}
, (A.2)

for some γ > 0, where F is the cumulative density function of P , with density p whose derivative is p′

(almost every where). The class F contains the most classical distributions such as uniform (γ = 0), normal,
exponential and gamma (γ = 1), Fisher (γ = (2 + ν2)/ν2 where ν2 is the second degree of freedom), Pareto
(γ = (µ+ 1)/µ where µ is the shape parameter), etc. If P0(Θ) ⊂ F , and if

m/ log n −−−−→
n→∞

0 and m(log n)2/3/n1/3 −−−−→
n→∞

0, (A.3)
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then √
6mn[Imn − log(2m) + ψ(2m)]

D−→ N (0, 1), (A.4)

where ψ(m) is the digamma function. The asymptotic bias log(2m) − ψ(2m) of Imn is that of −Vmn. [4]
points out that Imn may have an additional substantial bias for small samples and suggests the following
bias correction in the asymptotic distribution (A.4), from which decision rule can be consistently derived for
moderate and large sample sizes: √

6mn [Imn − bmn]
D−→ N (0, 1), (A.5)

where

bmn = log(2m)− log(n)− ψ(2m) + ψ(n+ 1) +
2m

n
R2m−1 −

2

n

m∑
i=1

Ri+m−2,

with Rm =
∑m

j=1 1/j. Through (A.5), an asymptotic p-value for the related VS test is derived, given by

p = 1− Φ−1
(√

6mn [Imn(x
n
1 )− bmn]

)
, (A.6)

where Imn(x
n
1 ) denotes the value of the statistic Imn for the observations xn1 = (x1, . . . , xn) and Φ denotes

the cumulative density function of the normal distribution. According to [4], the asymptotic p-value (A.6)
provides accurate results when the sample size n is at least 80.

For small sample sizes, Monte Carlo simulations may be preferred for computing p-values, as follows. A
large number N of replications of the sample Xn

1 drawn from the distribution P0(θ̂n) (or P0(θ) in case of
simple null hypothesis) are generated. The test statistic Iimn is computed for each replication i, 1 ≤ i ≤ N.

The p-value is then given by the empirical mean (
∑N

i=1 11{Ii
mn>Imn(xn

1 )})/N.
For choosing m, [4] proposes to minimize Imn � that is maximize Vmn, with respect to m, yielding the

most conservative test. The author notes also that the values of m for which Imn is negative have to be
excluded. Indeed, such negative values for Imn constitute poor estimates of the non-negative divergence
K(P |P0(θ)). Hence, m has to be chosen subject to the constraint

Vmn ≤ − 1

n

n∑
i=1

log(p0(.; θ̂n)). (A.7)

Finally, the window size selected by Song � say the optimal window size, is

m̂ = min

{
m∗ ∈ argmax

m∈N∗

{
Vmn : Vmn ≤ − 1

n

n∑
i=1

log p0(Xi, θ̂n)

}
: 1 ≤ m∗ < ⌊n1/3−δ⌋

}
, (A.8)

for some δ ∈ R such that 1/3− δ > 0 and the VS test statistic is

Im̂n = −Vm̂n − 1

n

n∑
i=1

log p0(Xi; θ̂n). (A.9)

The upper bound n1/3−δ for the window size m is chosen so that conditions (A.3) are ful�lled and the
asymptotic normality (A.4) holds. No systematic optimal choice for δ exists; it can depend on the family of
distributions the GOF is tested to.
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